MESSI v the Machine was how some commentators touted the World Cup final, inspired by the disciplined way the German team dismantled Brazil in the semi-finals. But despite such caricatures of Teutonic precision, German players are only human. So as the latest edition of RoboCup, a competition for robot soccer players rather than flesh-and-blood ones, kicks off on July 19th in João Pessoa, Brazil’s easternmost city, a question that will be on many minds is: when will real machines conquer the sport?


When the first RoboCup was held, in 1997, those who launched it set a target of 2050 for engineers to produce a humanoid robot team that would rival the champions of the older competition. Judged by the plodding clumsiness of some of the RoboCup players, that goal might seem far-fetched. But it is easy to underestimate how quickly robotics is improving. Self-driving cars and delivery drones, which seemed hopelessly futuristic just a decade ago, are now topics of serious business interest.

By comparison with the corporate investments of the likes of Google in electric cars, the teams competing in this year’s RoboCup—more than 150 of them—have shoestring budgets. But the tournament includes features that the organisers hope will accelerate innovation without the incentive of cash.

One is a clever combination of competition and co-operation. Leading up to the playoffs, teams prepare new strategies and fine-tune their hardware and software in secret. Immediately after the finals have been played, however, all must publish their methods, thus raising the bar for everyone the following year. Another feature is that there are limits to how far teams can push their hardware, to encourage them to develop smart routes to victory, rather than using mere brute force.  ...  

The state of play
Mr Biswas, a graduate student, works for Manuela Veloso. She helped found RoboCup and her group has won the most finals titles in the little league. In 2009 Dr Veloso and her colleagues decided to share with their competitors the vision software that had let their team win a streak of RoboCups. This helped establish the now-mandatory open-source approach that has rapidly raised the quality of the competition.


///  For whatever reasons, Veloso and her team could have unconsciously hit their level of "Peter's Principle" and realized continuous innovation was not possible.  ... They "open sourced" their code, while hoping that there will be more innovation from the competition.  ... Instead, they copied the code. Evidently they caught up with the current standard of strategic efficiency in five years, without ever providing any "true" innovation.  

... Strategically, Veloso erred in her decision of creating innovation by collaboration with rival groups.  . . . By patiently finding or establishing the "macro overview" that connects the framework of her venture to similar intellectual realms, the scope of her innovation's game could have amplified while allowing her to maintain some level of project control.   ...  Being mindful to the factors that drove the project, would have helped her.   ... ///

 

“In the past couple of years,” Dr Veloso opines, “one of the big changes is that we are starting to analyse real football tactics and strategy, to devise our own.” A paper her group published earlier this year lays out how their CMDragons team observed and exploited the defence tactics of opponents, luring them away from positions where they could prevent goals. This approach, dubbed “coerce and attack”, has parallels in professional playbooks.

Other research groups are getting equally sophisticated, and teams from Australia, China, Iran and Thailand, among other countries, are regularly placed high in several leagues of the competition—in contrast to their national reputations on real pitches. In the early years of RoboCup, there were huge differences in quality between the teams. No longer. The best of the little league routinely finish their ten-minute-long games with the low scores characteristic of well-matched human teams. Indeed, Dr Veloso’s squad came in second last year, after a penalty shoot-out following a 2-2 game.


... So is 2050 an unrealistic deadline for robots to beat the best humans at football? Half a century is roughly the time that separates ENIAC, America’s first electronic computer, from Deep Blue, the IBM machine that beat chess grandmaster Garry Kasparov in 1997. Judged in that light, RoboCup’s goal does not seem absurd. Indeed, the question may be whether, come 2050, there are still any human football players around who have not been prosthetically enhanced in some way, making them cyborgs. RoboCup v RoboCop, anyone?